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Damage spreading in the Ising model
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We present two interesting results regarding damage spreading in ferromagnetic Ising models. First, we
show that a damage spreading transition can occur in an Ising chain that evolves in contact with a thermal
reservoir. Damage heals at low temperature and spreads atThigihe dynamic rules for the system’s
evolution for which such a transition is observed are as legitimate as the conventionalGlaeber, Me-
tropolis, heat bath Our second result is that such transitions are not always in the directed percolation
universality class[S1063-651X97)13606-6

PACS numbses): 05.50+q, 05.70.Ln, 64.60.Ak, 64.60.Ht

I. INTRODUCTION (DP). This indeed is correct, but we discovered that if the
dynamics that is being used has certain symmetties DS
A system is said to exhibit damage spreadiBg) if the  transition is not in the DP classnterestingly this is the case
“distance” between two of its replicas, that evolve under thefor Glauber dynamics of thél=0 Ising model, for which
same thermal noise but from slightly different initial condi- the DS transition is non-DP.
tions, increases with time. Even though DS was first intro- We start by reviewing briefly{6,7] the conventional
duced in the context of biologically motivated dynamical @lgorithms—Glauber, heat batkiB), and Metropolis—and
systemd 1], it has evolved into an important tool in physics. Show that they form a particular subset of some general set
It is used in equilibrium[2] for measuring accurately dy- of legitimate rulesA. All members of A satisfy detailed
namic exponents and also out of equilibrium, to study thebalance with respect to the same Hamiltonian; hence all
influence of initial conditions on the temporal evolution of these rules generate the same equilibrium ensemble as the
various systems. In particular, one hoped that DS could beonventional algorithms and are equally legitimate to mimic
used to identify “phases” ofchaotic behavior in systems the temporal evolution of an Ising system in contact with a
with no intrinsic dynamics, such as Ising ferromagri&d] thermal reservoir. Next, we introduce two “new’” dynamic
and spin glassd$]. Such hopes were dampened when it wagules, which constitute just another subsetAfand show
realized that different algorithmic implementations of thethat for these two rules a DS transitidoesoccur in the 1D
same physical system’s dynamitsuch as Glauber versus Ising model. Moreover, as we show in the example of the
heat bath or Metropolis Monte Cajlean have different DS second rule, an addition@, symmetry of the DS order pa-
propertied6,7]. This implies that DS is not an intrinsic prop- rameter leads to a transition that is not in the DP universality
erty of a systenf8], since two equally legitimate algorithms class.
yield contradictory results. This problem was addressed re-
cently in Ref.[9], where we realized that onean define Il. PREVIOUS WORK,
“phases” on the basis of their DS properties in an algorithm- WITH CONVENTIONAL ALGORITHMS
independent manner. To do this one must, however, consider
simultaneously thentire setA of possible algorithmgdy-
namic procedurgghat are consistent with the physics of the
model studied(such as detailed balance, interaction range, H
and symmetrigs Every system must belong to one of three T —2 hi(t)oy(t), hi(t):z Kijoj(t), (D)
possible DS phases, depending on whether damage spreads B | ]
for all, none or a part of the members of the gkt , -
Once we havepbeen led to consider a large family of alvhereK;; =J/kgT ande;(t) =+ 1. Define a transition prob-
gorithms, it was natural to revisit an old question, such as thgbIIIty Pi(t)
possibility for DS in the one-dimensionélD) Ising ferro- ehi(®
magnet. In this case all conventional dynamic procedures pi(t)=
agree that damage does not spread. We show here that once
the family of dynamic procedures is extended in the spiri

explained abovea DS transition is possible in the 1D Ising . expressed in terms of random numkerg; (), selected

model.Having found such a DS transition, it is again natural _ . h I ility f he i
to investigate to which universality class it belongs. So farWIt equal probability from the interv4l,1]. The rule for a

this issue could be addressed only for the 2D case; since it Isstandard HBis

much easier to obtain high-quality numerical data in one oi(t+1)=sgfp;(t)—z]. (3)
dimension, we were able to test carefully a conjecture of

Grassbergef8], according to which the generic universality A different dynamic process is obtained by generating at

class of damage spreading transitions is directed percolatiogach sitéwo independentandom numberg, andz_, and

Denote the site which is being updatedibynd the set of
its neighbors byj. The energy at time is given by

@
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The update rules of HB, Glauber, and Metropolis dynamics
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using the first if o;(t)=+1 and the second when (and, hence, DSof two replicas{s} and{c'} is, however,
oi(t)=—1. The rules of thisuncorrelated HBdynamics governed by a joint transfer matrix of the two systems which,
may be written as in turn, is completely determined by the two-point functions
(Ie. o o.Te o o ). Ingeneraln-point functions de-
=% %1 %1% 0 Tivg
4) termine the joint transfer matrix of replicas. An important
requirement is that all correlation functions have to be invari-
ant under the symmetries of the mod@]. For a homoge-
neous Ising chain in zero field these symmetries are invari-
+sgripi(t) - 2] ance under reflection,

_Sgr[l_pi(t)_z] <r°’ifl""i"Ti+1>:<r‘7i+1"7i "Ti—1>’ (8

This rule can be expressed in the form of E4), but with (r f Y= )
the two random numbers completebnticorrelated i.e., Ti-1 i1l oy ,07,07, Tit 1701 o070y
z,+z_=1.

Finally the rules foMetropolisdynamics read

if o(t)=-+1
if O'i(t): -1

sgripi(t)—z.]
sgripi(t)—z-]

Glauberdynamics uses only one random number per site

(Ti(t"'l):{

it oy(t)=+1

at+1)= it o()=—1.

©)

and global inversion of all spinsZp symmetry,

+sgip(t)—z] if oy(t)=+1 (Fo_y0y.0,0= M0, 101 0101) 9
O'i(t+1): _ A (6)
—sgrip (h-2] if oy(t)=—1, . : >
Ti-1%0 %41 oy 0f 0]y
wherep;” (t) =min(1e™2M®), ,
It is easy to show that given;_4(t),oi(t),o;.1(t), the :<r—<ri,1,—rri ,—<ri+1rfgi'7 —al ,—a] )

1 +1

probability to obtaino;(t+1)=+1 is the same for standard
HB, uncorrelated HB, and Glauber dynamji&€]. Hence, by  For both HB and for Glauber dynamics, the one-point func-
observing the temporal evolution of single Ising system, tions are given by

one cannot tell by which of these methods was its trajectory
in configuration space generated. The difference between
these dynamics may become evident only when we observe
the evolution of two replicas, i.e., study damage spreading! he corresponding transfer matrices for single systems are,
Indeed Stanlept al. [4] and also MariZ, Herrmann, and de hence, identical. On the other hand, the tWO-pOint functions
Arcangelis[6] found, using Glauber dynamics, that damagefor HB and Glauber dynamics are different, so that damage
spreads for the 2D Ising model far>T.; similarly for Me- evolves. dlfferen.tly(se(.e Table )L Still, damage .does not
tropolis dynamics[6]. More recently Grassbergefl1] spread in one dimension for any of these algorithms at any
claimed that the DS transition occurs slightly beldw for ~ temperature.

Glauber dynamics, which was also observed in the corre-
sponding mean-field theof2]. On the other hand, damage
does not spread at any temperature with standard HB dynam-
ics for neither the 206] nor 3D Ising modelg5]. The 3D
model did exhibit DS forT>T* with T*<T, when Me-
tropolis[13] and Glaubef11,14 dynamics were used. In the
1D Ising model with HB, Glauber, or Metropolis dynamics, r
no damage spreading was observed.

<r0'i,l,0'i ,O’i+l>:2pi_1‘ (10)

IV. DYNAMIC RULE
FOR WHICH DAMAGE DOES SPREAD IN 1D

Consider the following dynamics for the 1D Ising model

| +sgnpi—2) if oj_1=0i1

G-10%ien | —sgn(l-pi—2) if oo # 04
11

lll. GENERAL CLASS OF DYNAMIC PROCEDURES As can be checked easily, this dynamical rule yields the

FOR THE ISING MODEL

The dynamic rules considered here for the 1D Ising mode

consist of local updates, where a random variabtet 1 is
assigned to the spiny;:

O'i(t+1):=ra.i71(t)’gi(t)’gi+l(t)- (7)

same one-point correlations as in H4O). Therefore, the
?volution of a single replica using this rule cannot be distin-
guished from that of Glauber or HB dynamics. However, the

two-point correlations(and therewith damage spreading

propertieg are different(see Table )l Unlike Glauber and
HB, this dynamics does exhibit a damage spreading transi-

tion in one dimension. This can be seen as follows. At

This random variable is generated in some probabilistic pro:r:m' Eq. (11) reduces to

cedure using one or several random numbers. As in the con-
ventional algorithms discussed above, we allow the random
variable to depend only on the values taken at tinig the L
updated spin itself and the spins with which it intera@es, ~ Which implies that the local damage;(t)=1-6,,.0/(
its nearest neighborsThe set of all one-point functions evolves deterministically:

<r(,Hy(,i Y(,Hl) determines the transfer matrix osaglesys-

tem. Here( ) denotes the average over many independent
realizations of random numbers. The simultaneous evolution

(12

— 1
r"'i—l""i ,(ri+1_0'i—10'i+1sgr(§_z),

0 if Aj_a()=A4A444(1)

Ai(t+1)= 1 if A_(D)#FA4(1).

(13
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TABLE I. Two-point correlations in the one-dimensional Ising model for various dynamic rules. We used
the notationk=tanh2/kgT.

Correlation Glauber Usual Uncorr. Dynamics Dynamics
function dyn. HB HB of Eq(11) of Eg. (18)
(ro__r__y) 1-« 1-« 1-« k—1 NM1-«)
(ro__r_,_) 2k—1 1 K2 1 2k—1
(ro__r_4y) k—1 1-«k 0 k—1 Mk—1)
(ro__re_y) 1-2« 1-2« 1-2k 1-2« 1-2k
(ro__riyy) -1 1-2« —K? 1-2« -1
(ro_yr_42) k—1 1-«k 0 k—1 NMkrk—1)
ro_,r_,y) -1 1 0 1 -1
{r_,ro__) 1 1 1 1 1
{ro_,ro_y) 1-« 1-« 1-« k—1 MN1-k)
{(ro_,rey) -1 1 0 1 -1
(roa_ro_y) -1 1-2« — K2 1-2« -1

Since this is exactly the update rule of a Domany-Kinzeldent runs up to 1500 time steps. However, in many runs
model[15] in the active phaséwith p;=1 andp,=0), we damage heals very soon, so that the run can be stopped ear-
conclude that folT=o damage spreads. On the other handier. As usual in this type of simulations, we measure the

for T=0, Eq.(11) reduces to survival probability P(t), the number of damaged sites
_ A(t), and the mean-square spreading of damage from the
-1 If o101 centerR?(t) averaged over the active runs. At the DS tran-

(14 sition, these quantities are expected to scale algebraically in

r =
Ti-1:91:0+1 _1 i ) )
sgnz=z) i oi1#0iss. the large time limit

In this case damage evolves probabilistically, and cannot be P(t)~t=% A(t)~t7, R(t)~t% (15)
viewed as an independent process. One can, however, show
that the expectation value to obtain damage atisi®@ver-  The critical exponents, 7, andz are related to the density
aged over many realizations of random numbers, satisfies th&ponent 8 and the scaling exponents, and v by
inequality (Ai(t+1))<3(Ai_1()+Ai,4(1)), that is,  5=p/v andz=2v, /v, and obey the hyperscaling relation
(A(t+1))<(A(t)). This means that fof =0 damage does 45+2y=dz. At criticality, the quantitieg15) show straight
not spread. In fact, simulating the spreading process, ongnes in double logarithmic plots. Off criticality, these lines
observes a DS transition at finite temperature. A typical temare curved. Using this criterion we estimate the critical tem-
poral evolution near the transition is shown in Fig. 1. perature for the DS transition by/kgT* =0.23085). The

In order to determine the critical exponents that characexponentss, 7, andz are measured at criticality, while the
terize the DS transitions, we perform dynamic Monte Carlogensity exponeng is determined off criticality by measuring
simulations[16]. Two replicas are started from identical ran- the stationary Hamming distanc®(T)~(T—T*)# in the
dom initial conditions, where one damaged site is inserted ajpreading phase. The results of our simulations are shown in
the center. Both replicas then evolve according to the dyrig. 2. From the slopes in the double logarithmic plots we
namic rules of the system using the same set of randoptain  the estimates §=0.1655), #=0.315(10),
numbers. In order to minimize finite-size effects, we simu-z=1 293), and 8=0.26(2) which are in fair agreement
late a large system of 5000 sites with periodic boundary congith the known [17] exponents for directed percolation
ditions. For various temperatures we perfornf Iidepen- 5= 0.159473), #=0.313684), z=1.265234), and
B=0.276494). We therefore conclude that, in agreement
with Grassberger’s conjectuf8], the DS transition belongs
to the DP universality class. This is very plausible; as far as
the damage variable is concerned there single absorbing
state(of no damage at alland the transition is from a phase
in which the system ends up in this state to one in which it
does not, just as is the case for DP.

replica 1 replica 2 damage V. DAMAGE SPREADING TRANSITION
WITH NON-DP EXPONENTS
FIG. 1. Temporal evolution of damage in the one-dimensional ) » )
Ising model of size 200 with the dynamics of H41) near the DS Different critical properties are expectgtB—23 for rules
transition J/kg T* =0.2305. Each configuration is represented by awith two distinct absorbing statesf the damage variablgs
row of pixels, and time goes downwards. The two replicas starfelated by symmetry. It is important to note that thesym-
from identical initial conditions. At an early time, a damage of five metry of the Ising system does not suffice—inverting all
sites is inserted in the center. spins inboth replicas does not change the damage variable
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FIG. 2. Numerical results for the one-dimensional Ising model Wththe dynamics of Eq(11) and(B) the dynamics of Eq(18). The
measured quantities are explained in the text.

(the Hamming distance between the two configurajions Consider now a different dynamic rule
Therefore, we are looking for dynamic rules whi@ have

two types of absorbing states—one with no damage and the +sgnpi—z) if oj_j0i0i.,=1
other with full damage. Furthermo«®), the two play com- r =
pletely symmetric roles. One can see that b@hand (b)

hold for rules that satisfy the condition 17)

Ti-1%i %1 | —sgnl-p—2) if oj_10707:1=—1.

For this rule, which also satisfies E(L6), we observe in
simulations that damage always spregsise Fig. &)]. In
order to generate @,-symmetric DS transition in one di-
The immediate consequence of this condition is that if anension, we use a rule that interpolates between this and
configuration {o(t)} evolves in one time step into Glauber. This can be done by introducing a second param-
{o(t+1)}, then the spin-reversed configuratigr-o(t)}  eter 0<A=<1, and “switching” between Glauber dynamics
will evolve into precisely{ —o(t+1)}. Imagine now simul-  and rule(17) as follows: in each update an additional random
taneous evolution of two replicas with initial statgs} and

{o'}, giving rise to a damage fielflA}. Reversal of the

initial state onone of the replicas will give sign-reversed

spin states on this replica, and hence the damage fieli f
{— A} will evolve. Thus, for rules that satisfy conditigh6),

the damage variabldas aZ, symmetry. A particular conse-
guence of this symmetry is that if two initial states are the
exact sign reverse of one another, this will persist at all sub-
sequent times. Therefore, inasmuchAas 0 (no damaggis

Toi10i.0001=  T—oiq,—0 0y (16

an absorbing state, so is the situation of full damayge,1. ()
For systems with sucé, symmetry we expect the DS tran-
sition (if it exists) to exhibit non-DP behavior. FIG. 3. Z,-symmetric damage spreading transition. Two repli-

_ Itis quite remarkable to note that Glauber dynamics Satgas with 200 sites are started from identical random initial condi-
isfies Eq.(16). The Z, symmetry of damage in the 1D ijons. At an early time five damaged sites are introduced in the
Glauber model is illustrated in Fig.(@. One can see that center. For fixed temperatudéksT=0.25, a typical temporal evo-
compact islands of damaged sites are formed because damtion of damage is shown fde) Glauber dynamica =1, (b) near

age does not heal spontaneously inside such islands but ondye transitiom\* =0.82, and(c) in the spreading regime=0. Be-

at the edges. However, as mentioned earlier, there is no D&use of the symmetry, islands of damaged sites can heal only at the
transition in the 1D Glauber model. edges.
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numberz is generated. IZ=\, rule (17) is applied, other- been observed in a variety of models, including certain

wise Glauber dynamics is used. This mixed dynamics can berobabilistic cellular automatgl8], nonequilibrium kinetic
expressed as Ising models with combined zero- and infinite-temperature

dynamics [19], interacting monomer-dimer model0],
+sgnpi—z) if y=1 branching-annihilating random walk&1], and certain lattice
lo 10i.0,,=| —sgrl—p,—2) if y=—1, (18  models with two absorbing stat¢82]. In all these models
the symmetry appears either as a parity conservation law or
as an explicitZ, symmetry among different absorbing

where phases. A field theory describing PC transitions is currently
L - developed in Refl23].
y=30i[(1+0i-10i+1) T (1= 0i-10i+1)Sgr(A — Z)]. The PC universality class is characterized by exponents

: : . : 6=0.2855), »=0.0Q(1), z=1.151), and3=0.922). In
Agam this rule leads to the pne-pomt .correlatlo'ns (.)f Eq'fact, repeating the numerical simulations described above for
(10), i.e., the temporal evolution of a single replica is theJ/kBT=0.25 and\* =0.82(1) (see Fig. 2 we obtain the

same as in Glauber and HB dynamics. However, varying - _ _ o
: : o = timates 6=0.295(10), »=0.01(2), z=1.1713), d
(at fixedT) we find a critical value.* where a DS transition eszlglge(e;) which rflre )in 7f7air ag]fee)mefwt Witr:( tr)1e I21rl)wn

?r;%irizbr?istysl?;]%%:mteirr?lp:(i)g;ﬂ@)e.vgilrittl:gn"S;rgggzgfigsnge‘%roth alues. We therefore' conclude that the DS transition'ob—

damage” play a symmetric role, the Hamming distarce serveql for the dynamics of E¢18) _bel_ongs_ to the PC uni-

(the density of damaged sii)esar’mot be used as an order versa_ll_ty class. Furthermore, our fmdmgs_ imply that th_e DS
transitions observed11] for the 2D Ising model with

parameter. Instead one has to use the densitkindfs N Glauber dynamics should also exhibit PC exponéresiem-
(domain wall$ between damaged and healed domains. B%er: d:2)yin ero field. anctross overto (ZDF; DP values
definition, the number of kinks is conserved modulo 2 Whichwhen a field is switchea on

establishes a parity conservation law. As can be seen in Fig.

3, two processes compete with each other: kinks annihilate

mutually (2X—>0)_, and already existing kinks branch into an ACKNOWLEDGMENTS

odd number of kinks X—3X,5X, . ..). Both processes re-

semble a branching annihilating walk with an even number We thank D. Stauffer for sharing with us his knowledge
of offspring. This branching process has a continuous phasef the DS literature and for encouragement. This work was
transition that belongs to the so-called parity-conservingupported by The Minerva Foundation and by the Germany-
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