
PHYSICAL REVIEW E JULY 1997VOLUME 56, NUMBER 1
Damage spreading in the Ising model

Haye Hinrichsen and Eytan Domany
Department of Physics of Complex Systems, Weizmann Institute, Rehovot 76100, Israel

~Received 2 January 1997!

We present two interesting results regarding damage spreading in ferromagnetic Ising models. First, we
show that a damage spreading transition can occur in an Ising chain that evolves in contact with a thermal
reservoir. Damage heals at low temperature and spreads at highT. The dynamic rules for the system’s
evolution for which such a transition is observed are as legitimate as the conventional rules~Glauber, Me-
tropolis, heat bath!. Our second result is that such transitions are not always in the directed percolation
universality class.@S1063-651X~97!13606-6#

PACS number~s!: 05.50.1q, 05.70.Ln, 64.60.Ak, 64.60.Ht
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I. INTRODUCTION

A system is said to exhibit damage spreading~DS! if the
‘‘distance’’ between two of its replicas, that evolve under t
same thermal noise but from slightly different initial cond
tions, increases with time. Even though DS was first int
duced in the context of biologically motivated dynamic
systems@1#, it has evolved into an important tool in physic
It is used in equilibrium@2# for measuring accurately dy
namic exponents and also out of equilibrium, to study
influence of initial conditions on the temporal evolution
various systems. In particular, one hoped that DS could
used to identify ‘‘phases’’ ofchaotic behavior in systems
with no intrinsic dynamics, such as Ising ferromagnets@3,4#
and spin glasses@5#. Such hopes were dampened when it w
realized that different algorithmic implementations of t
same physical system’s dynamics~such as Glauber versu
heat bath or Metropolis Monte Carlo! can have different DS
properties@6,7#. This implies that DS is not an intrinsic prop
erty of a system@8#, since two equally legitimate algorithm
yield contradictory results. This problem was addressed
cently in Ref. @9#, where we realized that onecan define
‘‘phases’’ on the basis of their DS properties in an algorith
independent manner. To do this one must, however, cons
simultaneously theentire setA of possible algorithms~dy-
namic procedures! that are consistent with the physics of th
model studied~such as detailed balance, interaction ran
and symmetries!. Every system must belong to one of thr
possible DS phases, depending on whether damage sp
for all, none or a part of the members of the setA.

Once we have been led to consider a large family of
gorithms, it was natural to revisit an old question, such as
possibility for DS in the one-dimensional~1D! Ising ferro-
magnet. In this case all conventional dynamic procedu
agree that damage does not spread. We show here that
the family of dynamic procedures is extended in the sp
explained above,a DS transition is possible in the 1D Isin
model.Having found such a DS transition, it is again natu
to investigate to which universality class it belongs. So
this issue could be addressed only for the 2D case; since
much easier to obtain high-quality numerical data in o
dimension, we were able to test carefully a conjecture
Grassberger@8#, according to which the generic universali
class of damage spreading transitions is directed percola
561063-651X/97/56~1!/94~5!/$10.00
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~DP!. This indeed is correct, but we discovered that if t
dynamics that is being used has certain symmetries,the DS
transition is not in the DP class. Interestingly this is the case
for Glauber dynamics of theH50 Ising model, for which
the DS transition is non-DP.

We start by reviewing briefly@6,7# the conventional
algorithms—Glauber, heat bath~HB!, and Metropolis—and
show that they form a particular subset of some general
of legitimate rulesA. All members ofA satisfy detailed
balance with respect to the same Hamiltonian; hence
these rules generate the same equilibrium ensemble as
conventional algorithms and are equally legitimate to mim
the temporal evolution of an Ising system in contact with
thermal reservoir. Next, we introduce two ‘‘new’’ dynam
rules, which constitute just another subset ofA, and show
that for these two rules a DS transitiondoesoccur in the 1D
Ising model. Moreover, as we show in the example of
second rule, an additionalZ2 symmetry of the DS order pa
rameter leads to a transition that is not in the DP universa
class.

II. PREVIOUS WORK,
WITH CONVENTIONAL ALGORITHMS

Denote the site which is being updated byi , and the set of
its neighbors byj . The energy at timet is given by

H
kBT

52(
i
hi~ t !s i~ t !, hi~ t !5(

j
Ki js j~ t !, ~1!

whereKi j5J/kBT ands i(t)561. Define a transition prob-
ability pi(t)

pi~ t !5
ehi ~ t !

ehi ~ t !1e2hi ~ t !
. ~2!

The update rules of HB, Glauber, and Metropolis dynam
are expressed in terms of random numbersz5zi(t), selected
with equal probability from the interval@0,1#. The rule for a
standard HBis

s i~ t11!5sgn@pi~ t !2z#. ~3!

A different dynamic process is obtained by generating
each sitetwo independentrandom numbers,z1 andz2 , and
94 © 1997 The American Physical Society
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56 95DAMAGE SPREADING IN THE ISING MODEL
using the first if s i(t)511 and the second whe
s i(t)521. The rules of thisuncorrelated HBdynamics
may be written as

s i~ t11!5H sgn@pi~ t !2z1# if s i~ t !511

sgn@pi~ t !2z2# if s i~ t !521.
~4!

Glauberdynamics uses only one random number per site

s i~ t11!5H 1sgn@pi~ t !2z# if s i~ t !511

2sgn@12pi~ t !2z# if s i~ t !521.
~5!

This rule can be expressed in the form of Eq.~4!, but with
the two random numbers completelyanticorrelated, i.e.,
z11z251.

Finally the rules forMetropolisdynamics read

s i~ t11!5H 1sgn@pi
1~ t !2z# if s i~ t !511

2sgn@pi
2~ t !2z# if s i~ t !521,

~6!

wherepi
6(t)5min(1,e72hi (t)).

It is easy to show that givens i21(t),s i(t),s i11(t), the
probability to obtains i(t11)511 is the same for standar
HB, uncorrelated HB, and Glauber dynamics@10#. Hence, by
observing the temporal evolution of asingle Ising system,
one cannot tell by which of these methods was its traject
in configuration space generated. The difference betw
these dynamics may become evident only when we obs
the evolution of two replicas, i.e., study damage spread
Indeed Stanleyet al. @4# and also Mariz, Herrmann, and d
Arcangelis@6# found, using Glauber dynamics, that dama
spreads for the 2D Ising model forT.Tc ; similarly for Me-
tropolis dynamics @6#. More recently Grassberger@11#
claimed that the DS transition occurs slightly belowTc for
Glauber dynamics, which was also observed in the co
sponding mean-field theory@12#. On the other hand, damag
does not spread at any temperature with standard HB dyn
ics for neither the 2D@6# nor 3D Ising models@5#. The 3D
model did exhibit DS forT.T* with T*,Tc when Me-
tropolis@13# and Glauber@11,14# dynamics were used. In th
1D Ising model with HB, Glauber, or Metropolis dynamic
no damage spreading was observed.

III. GENERAL CLASS OF DYNAMIC PROCEDURES
FOR THE ISING MODEL

The dynamic rules considered here for the 1D Ising mo
consist of local updates, where a random variabler561 is
assigned to the spins i :

s i~ t11!:5r s i21~ t !,s i ~ t !,s i11~ t ! . ~7!

This random variable is generated in some probabilistic p
cedure using one or several random numbers. As in the
ventional algorithms discussed above, we allow the rand
variable to depend only on the values taken at timet by the
updated spin itself and the spins with which it interacts~i.e.,
its nearest neighbors!. The set of all one-point function
^r s i21 ,s i ,s i11

& determines the transfer matrix of asinglesys-
tem. Here^ & denotes the average over many independ
realizations of random numbers. The simultaneous evolu
y
en
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m-
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~and, hence, DS! of two replicas$s% and $s8% is, however,
governed by a joint transfer matrix of the two systems whi
in turn, is completely determined by the two-point functio
^r s i21 ,s i ,s i11

r s
i218 ,s

i8 ,s i118 &. In general,n-point functions de-

termine the joint transfer matrix ofn replicas. An important
requirement is that all correlation functions have to be inva
ant under the symmetries of the model@9#. For a homoge-
neous Ising chain in zero field these symmetries are inv
ance under reflection,

^r s i21 ,s i ,s i11
&5^r s i11 ,s i ,s i21

&, ~8!

^r s i21 ,s i ,s i11
r s

i218 ,s
i8 ,s i118

8 &5^r s i11 ,s i ,s i21
r s

i118 ,s
i8 ,s i218

8 &,

and global inversion of all spins (Z2 symmetry!,

^r s i21 ,s i ,s i11
&52^r2s i21 ,2s i ,2s i11

&, ~9!

^r s i21 ,s i ,s i11
r s

i218 ,s
i8 ,s i118

8 &

5^r2s i21 ,2s i ,2s i11
r

2s
i218 ,2s

i8 ,2s
i118

8 &.

For both HB and for Glauber dynamics, the one-point fun
tions are given by

^r s i21 ,s i ,s i11
&52pi21. ~10!

The corresponding transfer matrices for single systems
hence, identical. On the other hand, the two-point functio
for HB and Glauber dynamics are different, so that dama
evolves differently~see Table I!. Still, damage does no
spread in one dimension for any of these algorithms at
temperature.

IV. DYNAMIC RULE
FOR WHICH DAMAGE DOES SPREAD IN 1D

Consider the following dynamics for the 1D Ising mod

r s i21 ,s i ,s i11
5H 1sgn~pi2z! if s i215s i11

2sgn~12pi2z! if s i21Þs i11 .
~11!

As can be checked easily, this dynamical rule yields
same one-point correlations as in Eq.~10!. Therefore, the
evolution of a single replica using this rule cannot be dist
guished from that of Glauber or HB dynamics. However, t
two-point correlations~and therewith damage spreadin
properties! are different~see Table I!. Unlike Glauber and
HB, this dynamics does exhibit a damage spreading tra
tion in one dimension. This can be seen as follows.
T5`, Eq. ~11! reduces to

r s i21 ,s i ,s i11
5s i21s i11sgn~

1
22z!, ~12!

which implies that the local damageD i(t)512ds i (t),s i8(t)

evolves deterministically:

D i~ t11!5H 0 if D i21~ t !5D i11~ t !

1 if D i21~ t !ÞD i11~ t !.
~13!
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TABLE I. Two-point correlations in the one-dimensional Ising model for various dynamic rules. We
the notationk5tanh2J/kBT.

Correlation Glauber Usual Uncorr. Dynamics Dynamics
function dyn. HB HB of Eq.~11! of Eq. ~18!

^r222 r221& 12k 12k 12k k21 l(12k)
^r222 r212& 2k21 1 k2 1 2k21
^r222 r211& k21 12k 0 k21 l(k21)
^r222 r121& 122k 122k 122k 122k 122k

^r222 r111& 21 122k 2k2 122k 21
^r221 r212& k21 12k 0 k21 l(k21)
^r221 r211& 21 1 0 1 21
^r221 r122& 1 1 1 1 1
^r221 r121& 12k 12k 12k k21 l(12k)
^r221 r112& 21 1 0 1 21
^r212 r121& 21 122k 2k2 122k 21
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Since this is exactly the update rule of a Domany-Kin
model @15# in the active phase~with p151 andp250), we
conclude that forT5` damage spreads. On the other ha
for T50, Eq. ~11! reduces to

r s i21 ,s i ,s i11
5H s i21 if s i215s i11

sgn~z2 1
2 ! if s i21Þs i11 .

~14!

In this case damage evolves probabilistically, and canno
viewed as an independent process. One can, however, s
that the expectation value to obtain damage at sitei , aver-
aged over many realizations of random numbers, satisfies
inequality ^D i(t11)&< 1

2^D i21(t)1D i11(t)&, that is,
^D(t11)&<^D(t)&. This means that forT50 damage does
not spread. In fact, simulating the spreading process,
observes a DS transition at finite temperature. A typical te
poral evolution near the transition is shown in Fig. 1.

In order to determine the critical exponents that char
terize the DS transitions, we perform dynamic Monte Ca
simulations@16#. Two replicas are started from identical ra
dom initial conditions, where one damaged site is inserte
the center. Both replicas then evolve according to the
namic rules of the system using the same set of rand
numbers. In order to minimize finite-size effects, we sim
late a large system of 5000 sites with periodic boundary c
ditions. For various temperatures we perform 106 indepen-

FIG. 1. Temporal evolution of damage in the one-dimensio
Ising model of size 200 with the dynamics of Eq.~11! near the DS
transitionJ/kBT*50.2305. Each configuration is represented by
row of pixels, and time goes downwards. The two replicas s
from identical initial conditions. At an early time, a damage of fi
sites is inserted in the center.
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dent runs up to 1500 time steps. However, in many ru
damage heals very soon, so that the run can be stopped
lier. As usual in this type of simulations, we measure t
survival probability P(t), the number of damaged site
D(t), and the mean-square spreading of damage from
centerR2(t) averaged over the active runs. At the DS tra
sition, these quantities are expected to scale algebraical
the large time limit

P~ t !;t2d, D~ t !;th, R2~ t !;tz. ~15!

The critical exponentsd, h, andz are related to the densit
exponent b and the scaling exponentsn' and n uu by
d5b/n uu andz52n' /n uu , and obey the hyperscaling relatio
4d12h5dz. At criticality, the quantities~15! show straight
lines in double logarithmic plots. Off criticality, these line
are curved. Using this criterion we estimate the critical te
perature for the DS transition byJ/kBT*50.2305(5). The
exponentsd, h, andz are measured at criticality, while th
density exponentb is determined off criticality by measuring
the stationary Hamming distanceD(T);(T2T* )b in the
spreading phase. The results of our simulations are show
Fig. 2. From the slopes in the double logarithmic plots
obtain the estimates d50.165(5), h50.315(10),
z51.29(3), and b50.26(2) which are in fair agreemen
with the known @17# exponents for directed percolatio
d50.15947(3), h50.31368(4), z51.26523(4), and
b50.27649(4). We therefore conclude that, in agreeme
with Grassberger’s conjecture@8#, the DS transition belongs
to the DP universality class. This is very plausible; as far
the damage variable is concerned there is asingle absorbing
state~of no damage at all! and the transition is from a phas
in which the system ends up in this state to one in which
does not, just as is the case for DP.

V. DAMAGE SPREADING TRANSITION
WITH NON-DP EXPONENTS

Different critical properties are expected@18–23# for rules
with two distinct absorbing states~of the damage variables!
related by symmetry. It is important to note that theZ2 sym-
metry of the Ising system does not suffice—inverting
spins inboth replicas does not change the damage varia

l

rt
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FIG. 2. Numerical results for the one-dimensional Ising model with~A! the dynamics of Eq.~11! and~B! the dynamics of Eq.~18!. The
measured quantities are explained in the text.
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~the Hamming distance between the two configuration!.
Therefore, we are looking for dynamic rules which~a! have
two types of absorbing states—one with no damage and
other with full damage. Furthermore~b!, the two play com-
pletely symmetric roles. One can see that both~a! and ~b!
hold for rules that satisfy the condition

r s i21 ,s i ,s i11
52r2s i21 ,2s i ,2s i11

. ~16!

The immediate consequence of this condition is that i
configuration $s(t)% evolves in one time step into
$s(t11)%, then the spin-reversed configuration$2s(t)%
will evolve into precisely$2s(t11)%. Imagine now simul-
taneous evolution of two replicas with initial states$s% and
$s8%, giving rise to a damage field$D%. Reversal of the
initial state onone of the replicas will give sign-reverse
spin states on this replica, and hence the damage
$2D% will evolve. Thus, for rules that satisfy condition~16!,
thedamage variablehas aZ2 symmetry. A particular conse
quence of this symmetry is that if two initial states are t
exact sign reverse of one another, this will persist at all s
sequent times. Therefore, inasmuch asD50 ~no damage! is
an absorbing state, so is the situation of full damage,D51.
For systems with suchZ2 symmetry we expect the DS tran
sition ~if it exists! to exhibit non-DP behavior.

It is quite remarkable to note that Glauber dynamics s
isfies Eq. ~16!. The Z2 symmetry of damage in the 1D
Glauber model is illustrated in Fig. 3~a!. One can see tha
compact islands of damaged sites are formed because
age does not heal spontaneously inside such islands but
at the edges. However, as mentioned earlier, there is no
transition in the 1D Glauber model.
he
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Consider now a different dynamic rule

r s i21 ,s i ,s i11
5H 1sgn~pi2z! if s i21s is i1151

2sgn~12pi2z! if s i21s is i11521.

~17!

For this rule, which also satisfies Eq.~16!, we observe in
simulations that damage always spreads@see Fig. 3~c!#. In
order to generate aZ2-symmetric DS transition in one di
mension, we use a rule that interpolates between this
Glauber. This can be done by introducing a second par
eter 0<l<1, and ‘‘switching’’ between Glauber dynamic
and rule~17! as follows: in each update an additional rando

FIG. 3. Z2-symmetric damage spreading transition. Two rep
cas with 200 sites are started from identical random initial con
tions. At an early time five damaged sites are introduced in
center. For fixed temperatureJ/kBT50.25, a typical temporal evo
lution of damage is shown for~a! Glauber dynamicsl51, ~b! near
the transitionl*50.82, and~c! in the spreading regimel50. Be-
cause of the symmetry, islands of damaged sites can heal only a
edges.
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98 56HAYE HINRICHSEN AND EYTAN DOMANY
number z̃ is generated. Ifz̃>l, rule ~17! is applied, other-
wise Glauber dynamics is used. This mixed dynamics can
expressed as

r s i21 ,s i ,s i11
5H 1sgn~pi2z! if y51

2sgn~12pi2z! if y521, ~18!

where

y5 1
2s i@~11s i21s i11!1~12s i21s i11!sgn~l2 z̃ !#.

Again this rule leads to the one-point correlations of E
~10!, i.e., the temporal evolution of a single replica is t
same as in Glauber and HB dynamics. However, varyinl
~at fixedT) we find a critical valuel* where a DS transition
occurs. A typical temporal evolution of damage near
transition is shown in Fig. 3~b!. Since ‘‘damage’’ and ‘‘no
damage’’ play a symmetric role, the Hamming distanceD
~the density of damaged sites! cannot be used as an ord
parameter. Instead one has to use the density ofkinks N
~domain walls! between damaged and healed domains.
definition, the number of kinks is conserved modulo 2 wh
establishes a parity conservation law. As can be seen in
3, two processes compete with each other: kinks annihi
mutually (2X→0), and already existing kinks branch into a
odd number of kinks (X→3X,5X, . . . ). Both processes re
semble a branching annihilating walk with an even num
of offspring. This branching process has a continuous ph
transition that belongs to the so-called parity-conserv
~PC! universality class. Phase transitions of this type ha
ys

at

r
,

r-
e

.

e

y

ig.
te

r
se
g
e

been observed in a variety of models, including cert
probabilistic cellular automata@18#, nonequilibrium kinetic
Ising models with combined zero- and infinite-temperatu
dynamics @19#, interacting monomer-dimer models@20#,
branching-annihilating random walks@21#, and certain lattice
models with two absorbing states@22#. In all these models
the symmetry appears either as a parity conservation law
as an explicit Z2 symmetry among different absorbin
phases. A field theory describing PC transitions is curren
developed in Ref.@23#.

The PC universality class is characterized by expone
d50.285(5), h50.00(1), z51.15(1), andb50.92(2). In
fact, repeating the numerical simulations described above
J/kBT50.25 andl*50.82(1) ~see Fig. 2!, we obtain the
estimates d50.295(10), h50.01(2), z51.17(3), and
b50.86(5), which are in fair agreement with the know
values. We therefore conclude that the DS transition
served for the dynamics of Eq.~18! belongs to the PC uni-
versality class. Furthermore, our findings imply that the D
transitions observed@11# for the 2D Ising model with
Glauber dynamics should also exhibit PC exponents~remem-
ber: d52) in zero field, andcross overto ~2D! DP values
when a field is switched on.
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